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PROPAGATION OF ACOUSTIC WAVES IN
UNSATURATED POROUS MEDIA

A. M. Maksimov UDC 532.546:534.2

A mathematical model of propagation of acoustic waves in a porous medium saturated with a two-phase
mixture is proposed. The mechanism of initiation of slow motion as a result of prolonged nondestructive
acoustic action is analyzed.

The problem of the description of the nonlinear wave dynamics of rocks in the acoustic frequency range
assumes not only analysis of the propagation and attenuation mechanisms for fast elastic waves [1, 2] but also
estimation of slow motion (for example, filtration flow and a change in the stressed-strained state) that is initiated
as a result of prolonged action of acoustic waves {3 ]. A mathematical model of a fluid-saturated deformable porous
medinm can be efficiently constructed by the methods of porous-medium mechanics [4] and, under certain
conditions of the existence of dimensionless perturbations, be investigated using asymptotic methods, for example,
an operator method of multiscale expansions {5].

Implementation of the indicated approach in cases of single-phase saturation is presented in [6-8 ], in which
account for dispersion factors (viscous stresses and thermal diffusivity) is shown to give rise, for the highest spatial
derivatives in the equations of the model, to dimensionless parameters: the inverse acoustic Reynolds Re, ! and
Peclet Pe, ' humbers. For large Re, >> 1 and Pe, >> 1, which correspond to a high-permeability medium saturated
with a low-viscosity fluid, it becomes possible to use the multiscale-expansion method for asymptotic investigation
of the model in the ultrasonic range of 10°-10° Hz (when the carrier-wave frequency, on the one hand, exceeds
the characteristic frequency of interphase transfer of momentum w, = vmz/px, where v, p, m, and « are the
characteristic viscosity of the fluid and density, porosity, and permeability of the medium, and, on the other, does
not fall within the megahertz range, in which scattering mechanisms should be allowed for [9)).

The asymptotic method enables us to separate fast and slow motions and solve two basic problems. The
first problem consists in assessing fast processes of wave propagation and attenuation against the background of
the slow motion of the medium. The solution is constructed in two stages: first, linear dispersion analysis is
performed, which enables us to assess the stability and regimes of wave attenuation over a wide range of acoustic
Reynolds and Peclet numbers. Next, for large Re, and Pe,, the Cauchy problem for the initial system of equations
of the laws of conservation of mass, momentum, and energy is transformed to a Cauchy problem for nonlinear
evolution equations (of the Burgers type), which permits investigation of nonlinear mechanisms of attenuation.

The second problem involves evaluation of the "work” of acoustic waves over a long time, when averaging
of nonlinear oscillations leads to accumulation of changes in the parameters of the background motion. Clearly,
this problem is key for modeling the acoustic action of waves of different types on oil pools. Construction of the
solution here assumes derivation and numerical investigation of a system of equations that describes background
motion in "real” time and takes into account (in the form of sources) the nonlinear contribution of fast oscillations.

Formulation of the Pool Model. We consider a porous medium that consists of an effective viscoelastic solid
phase that is formed by a thermoelastodeformable skeleton and a viscous liquid bound by the skeleton surface and
is saturated with a two-phase fluid, i.e., a viscous liquid and gas that occupy their pore systems. The stress tensors
in the liquid and gas phases will have the form G, j=1, 2, 3)
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liq -
Pij = = Pyq éfj + Vg [avhqt-/axj + Ov“qj/axi - (2/73) (avnqk/dxk) 6,.].] s

(1)
Pﬁ- =-p dij +v, [()vgi/axj + v/ dx; — (2/3) (avgk/axk) aij I.

We write the equations of state, the thermodynamic relations for the liquid and gas phases, and the
capillary-equilibrium condition:
pg =Pg/(RTg), E;=CiTy, piiqg = Piigo (1 *+ Biiqg Piiq ~ Piiqo) ~ Piiq (Tiiq — Tiiq0) »
2)
Piq4Eiiq = P1iqCiiq9Thiq T (Prig”Piig) Piiq — PiiqT1iq¥Pliq» Pg — Piiq = ¥J (5) .

The porous-medium skeleton and the bound liquid will be assumed to form an effective viscoelastic solid
phase that exhibits the elastic properties of the skeleton and the viscous properties of the liquid. Here, the skeleton
and the bound liquid have the same velocity, temperature, and pressure. With allowance for the viscoelastic
properties, the rheological relation for the solid phase has the form (, j=1, 2, 3

aij = Kekkalj + 2G (e,-j - ekkélj/3) + ﬂSKpélj - ¢SKT56U +
+ Rea—lamva (dvg;/ 0x; + dvg/ dx; — (2/3) (Ivg/ dxg) Oy, 3)
where the average pore pressure p = spiiqg + (1 — s)pg.

The equations of state and the thermodynamic relations for the components of the solid phase will be
represented as

S
Pa =Pao (1 = B (04’3 — 9g) — ¢, (Ts — Tg)) ;
S
Ps = pPso (1 = Bs (0 /3 — 9p) = 9 (Ts — Tp)) 5
. . C))
pdEs = pCdT + oyde; + pTdoy /3,
N S
padEa = paCade - akk/(3pa) dpa + (paTsd Ukk/3 N
where the true stresses in the solid phase are determined by the relation
S liq

oy =0;/(1— (1 —aym) +sP + (1 —s) P

We introduce the following dimensionless variables and parameters:
x = x/ X { = t/ty, = u/xg p' =p/py, = P/Ky, o = o/Ky, T = T/6),
vV=vivy, B =PKy, 9 =96y, K =K/Ky, G =G/Ky, E = E/vy,
‘ ' 2, 22 ‘ 2
v =v/(Kolp), C =Cly/vy, X =20ply/ (XgvePo) » X = X8alo’ (VoPo) -
- 2 .
R = RHO/VO, k -—kxo, w = wly,
12

where x4 = vylg, Ly =p0x/vg, vo = (Ko/pg) .

Dropping the primes on the symbols, we write, in dimensionless form, the system of mass, momentum,
and energy equations ¢, j=1, 2, 3).
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The laws of conservation of mass are
d(m (1 =s)pg)/ot+V (m(l—s)pgvg) =03 0(mspyq)/ ot + V, (mspyqviig) = 0;
(%)
d (amp, + (1 = m)pg)/ot+V, ((amp, + (1 —m)p)vy) =0,

where wiq = (Miigls Viiq2» Viigd)» Vg = (Vgls Vg2, Vg3)s Vs = (W1, Vg2, Vs3).
The laws of conservation of momentum are

liq
Piig [8701 + (Vig, V) T wiq — 0Py /9x; + ms (1 — @) (Wiqy — Vsi)/frq (8) = 05

Py (0708 + (v, V) vy = 0PF/0x; + m (1 = 5) (1 = @) (Vg — V) Vg/ (g f () = 0

(ampg + (1 — m) pg) 10/t + (v, V) vg; — 0,/ 9x; —
~ s = (1 —a)ym)aPii/ax;— (1 = 5) (1 = (1 — @) m) aP%/ox; —

— st (1= @) (Vg = Vo) fiq () = M (1 = )2 (1 = @) (v = v) vg/Ygf (5)) = 0. (6)

The laws of conservation of energy are
m (1 =) (1 —a)pg 18731 + (vy, VY1 E; — ms (1 — ) P} avg/ax; + xy (Ty — T) —
22 2 2
—ms (I —a) (Vg = v) v/ (igfg () — (1 =) A,V (m (1 =) V,Tg) =0
i
ms (1 — ) pyq [8/01 + (viq, V)] Ejig = ms (1 — @) Pylavq,/ 0x; —

22 2 2
-ms (1 —a) (vliq - V) /j"liq (s) + Xiiq (Tl-lq -T) ~ (1 —a) /lanx (mstT“q) =0;

(I = m)pg (870t + (v, VY1 Eg + amp, [3/0t + (v, V)1 E, —

—loj+s(—=(1~a)ym) pg_q + (1 =) (1= (1 —a)m) P} avy/ox; —
= Xiiq(Tiiqg = T) =g (Tg = Ty =V, (1 —m)Aj + amd ) V,T =0 ()
and
ouy/ 9t — v =05 ey — 10w/ dx; + du;/dx;1/2 =0 (®)

Substitution of the rheological and thermodynamic relations into the system of conservation laws (1)-(8)
gives rise, for the second spatial derivatives in the momentum and energy equations, to the inverse acoustic
Reynolds Rea—l and Peclet Pea_1 numbers, respectively. It is easy to see that

2 . - .
Re, = vyxgpo/vo = Kgpok/vy, Pey = vpxgpoCo/ig = Ko poCok/ (Veho) -

Estimates of the dimensioniess parameters can be obtained using the characteristic constants of rocks and
pore fluids: Ky ~108-10° Pa, 6~ 102~ 10% K, po ~10' =10 kg/m?,  ~1071°~107° Pa™!  p ~1070~1073 k!,
Cy~103 3/ (kg Ky, 35 ~1073-10° W/ (m-K), vy ~107°=1073 Pa-sec, and « ~10719~107'2 m? For these
parameters, we have an Re, range of ~10°-10° and a Pe, range of ~ 10" —10°. Thus, in the actual range of pool
parameters, the degree of influence of dispersion factors (viscous stresses and thermal diffusivity) can prove to be
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both rather small (in a high-permecability medium saturated with & low-viscosity fluid) and finite (in a low-
permeability medium saturated with a high-viscosity fluid). For large Re, >> 1 and Pe, >> 1, it becomes possible
to identify perturbations associated with these numbers and to investigate the process asymptotically.

Evolution of Smali Free Oscillations. To investigate the special features of wave propagation in a porous
medium saturated with a two-phase liquid-gas mixture, in what follows we restrict ourselves to the Cauchy problem
with the initial data (i, j=1, 2, 3)

_ 0 _ 0 0 0 0 _ 0
Uil p=o = 4 + Vsily=0 = Vsi» vgi|t=0"vgi’ vliqilt=0_vliqi’ mlig=m , sl=g=s5,

0 0 0 0 0
Piigli=0 = Piiqs Pgli=0=Pg+ Tgli=0 =Ty Tiqli=0=Tiiq> Tslt=0=Ts;
eij|t=0 = eg. = [au?/axj + au?/ax,-]/Z;
0 0 0 0, 0
KT8, + am®y, [ave/ dx; + ave/ dx; — (2/3) (9ve/ 3x,) 3,1 ©)

The solution to problem (1)-(9) will be sought in the form of a superposition of the slow background motion
and its small rapidly-oscillating perturbation

U = Uy (x, 1) + OU, exp (iS/0) . (10)

Here ¢ is the perturbation, U = (m, vg;, Vigi, Vsi» Plig» Pg» S» Tgs Tiig» Tss is 03y €;) is the vector-function of the
sought quantities, and the phase is S/¢ = (k&) — w?, where the fast variables are 7 = t/¢ and &; = x;/¢.

For simplicity we take, as the background solution, a uniform steady state, i.e., a quiescent state Uf,o) whose
existence is governed by the conditions of zero velocities of phase motion (v(o) = v(o) = v(o) = 0), equality of phase
temperatures (T(O) = 7‘(0) = T(o) = 7(0)) and independence of the constants m®© pg , p(%) . T(O) (0) of x.

liq
The system of equatlons (1)-(8) linearized against the background U(o) can be represented in the operator

form
AU=0, (I

where
A(/0t,3/0x;, 8 /axpx;, Ug) = Ay (8791, 3/ax;, UY) + Ay (3°/axax; , UY) + Az (UY)

In what follows, let U, be determined by the amplitude of the initial perturbation, i.e., the oscillating portion
v = m?, gl)), vl(g),, g?), p(l(()]), 20)’ s, T(go), Tfi%), Tgo), ufo), al(jo), e,(j(.))), the wave-vector components are real
numbers, and the frequencies w can be complex. This approximation corresponds to the Cauchy problem for the
evolution of k-waves that are the analog of free oscillations [10]. Here, the imaginary part of w determines the
coefficient of wave attenuation.

Substitution of the solution in the form of (10) into the linear system (11) leads to the condition of nontrivial
solvability: a dispersion equation that relates w to k. For analyzing the attenuation mechanisms for waves of
different types, it is of interest to investigate the dependences of the phase velocities V(k) = Re(w/!kl) and the
attenuation coefficients (k) = Im(w) in various scales of the acoustic Reynolds and Peclet numbers and the related
perturbation e. Results under the assumption of the equality of thc Froude number Fr = | are given below for three
cases. We note that the wave characteristics obtained as functions of 14l correspond to an isotropic background
stressed-strained state.

Analysis of Dispersion Relations. Case I: el = R(:,:l = Pe;l ~107°% It is easy to see that substitution of

(10) into (11) leads, accurate to Q(e), to the dispersion relation
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Fig. 1. Dimensionless phase velocity V) (a) and attenuation coefficient 8; (b)
of a longitudinal wave of the Ist kind vs. the modulus of the wave vector.

J,=DetA, (- iw, ik, UY)=0. (12)

The dispersion relations are not given in explicit form because of their extremely cumbersome nature.
Further investigation is limited to a2 numerical analysis with graphical representation of the results.

In the case under study, the system of equations of the model is hyperbolic, and dissipation and dispersion
effects are not allowed for in the linear analysis. This leads to absence of attenuation (Im(w) = 0) and constant
velocities for all types of waves for any k. We note that linear analysis is the first stage of using the multiscale-
expansion method to construct an asymptotic solution of higher accuracy. Thus, constructing a solution accurate
to O(e? ) leads to a nonlinear equation of the Burgers type, and the next step of the expansion (accurate to 0(e3)
leads to a Korteweg—de Vries—Burgers-type equation. This nonlinear evolution equation already allows for effects
of weak dissipation and dispersion and enables us to analyze nonlinear regimes of attenuation of waves and their
resonance interaction {11 ].

Case 2: € = Re,,Tl = Pe;l ~1073, Substituting (10) into (11) leads, accurate to O(e), to the dispersion
relation

Jp=Det A (= iw, ik, UY) + Ay (Ckik;, USH]1 = 0. (13)

As can be seen from (13), in the case under study the dispersion factors are allowed for and dissipation due to
interphase friction is disregarded in the characteristic equation. The system of equations of the model is no longer
hyperbolic, which is expressed, in particular, in the complex-valued nature of the frequencies of all the identified
wave types. Here it is of interest to evaluate in a linear approximation the phase velocities of the waves V and the
attenuation coefficients Jd as functions of the wavelength.

Asymptotic analysis of this case in a nonlinear statement assumes the use of a modified multiscale-
expansion method [§] for the case of "strong” dispersion, which is beyond the scope of the present work.

Case 3: e =Re, 1= Pe, ! 1. Here all the factors (inertia, dissipation, and dispersion factors) prove to be
of the same order, and the system of equations of the model does not involve a perturbation that governs the scale
of fast variables (r = ¢, &; = x;). To analyze the evolution of perturbations of the background solution, let us assume
additionally that U; << U}, Substitution of (10) into (11) leads to the dispersion relation

Jy=Det [A (= iw, ik;, US) + Ay (Pkik; , US) + A3 (USY) ] = 0. (14)

In the case under study, it becomes possible to assess the joint effect of dissipation and dispersion mechanisms.
Figures 1-3 present results of calculations of the phase velocities V; and the aitenuation coefficients d; for
longitudinal waves of the Ist ({ = /) and 2nd ( = 2) kind and capiilary waves (¢ = 3) based on a numerical
determination of the roots of dispersion relations (12)-(14). The numbers of the presented curves correspond to
the above cases. The calculations are performed for the following dimensionless parameters: vy = 0.01, »jq = 0.1,
va = 1, pao =1, pliqo = 1, pso = 2.5, 9o = 0.5, B, = 0.5, pjiqg = 0.5, Biiq = 0.5, ps=0.1,3,=0.1, G=03, K= 1,
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Fig. 2. Dimensionless phase velocity V5 (a) and attenuation coefficient &, (b)
of a longitudinal wave of the 2nd kind vs. the modulus of the wave vector.

=1, Cy =0.3, C; = 0.4, A, = 0.001, /Il,q—OS Ay -05/1 1, x,,q—m 2%=001,a=0.1,m? =02,

T‘O’ ?")—01 =0, 0501 + (1 - 29)° ), fig = s 2 fo=( — 9% y=0.001.
The solid curves (1, 2, and 3) are obtained for s - 0.2, and the dashed curves (1°, 2, and 3') correspond
©) -
to s~/ =0.8.

Let us first consider longitudinal waves of the 1st kind (Fig. 1). Case I (curves 1 and 1°) is characterized
by a wavelength-independent phase velocity and absence of attenuation (this is true of all the wave types for case
7). Comparison of the solid and dashed curves demonstrates a significant increase in the propagation velocity for
waves of the 1st kind with increase in the liquid-phase content. A tendency for a decrease in the velocity of the
wave with decrease in its wavelength when the effect of the dispersion and dissipation factors shows up is also
evident (curves 2 (2') and 3 (3') in Fig. 1a). However, velocity dispersion becomes substantial only as the saturation
s© increases.

Attenuation of waves of the Ist kind increases as a whole as the wavelength decreases (curves 2 (2') and
3 (3" in Fig. 1b). With high saturation of the liquid phase, there ts an attenuation extremum, where the tendency
for an increase in the absolute value of the attenuation coefficient gives way to the opposite (curves 2 and 2’ in Fig.
Ib).

An ambiguous effect of the magnitude of the saturation s© shows up clearly in the example of longitudinal
waves of the 2nd kind that are distinguished by oppositely directed motions of the solid and fluid phases. As is
evident from a comparison of curves 2 and 2’ in Fig. 2 in case 2, for a larger s© the phase velocity proves to be
higher only in the longwave range, while the attenuation increases with s©@ for all wavelengths. Case 3, where
interphase friction has a determining effect, is characterized by a sharp decrease in the wave velocity and an
increase in the attenuatioa as the wavelength decreases. This is in good agreement with known experimental facts
of strong attenuation of waves of the 2nd kind in rocks [3].

It is significant that in the considered case of saturation of the porous medium with a two-phase fluid (a
liquid-gas mixture), the absolute values of the attenuation coefficients for waves of the 1st and 2nd kind prove to
be of the same order of magnitude in the shortwave (ultrasonic) range. An important difference shows up in the
magnitude of the phase velocity.

We analyze capillary waves that are characterized by antiphase motion of the solid phase and the liquid —gas
mixture in them.

The curves of Fig. 3 indicate very low velocities of the longitudinal capillary waves that differ from the
velocities of other longitudinal waves by 1-2 orders of magnitude. With low saturation s(O), the effect of the dispersion
and dissipation factors leads to near-zero phase velocities (curves 2 and 2' in Fig. 3a). As s©@ increases, an
extremum character is observed for the dependence of V3 in the longwave range.

The character of the curves of Fig. 3b indicates a qualitative similarity of the dependences of the atienuation
coefficients for capillary waves and waves of the 2nd kind. The important difference is in the fact that, in the
capillary waves, the attenuation coefficient is an order of magnitude higher.

Assessment of the Resultant Action of Acoustic Waves. For asymptotic analysis of the dynamics of the
background motion, we represent the solution to probiem (1)-(9) in the form [6-8, 11]
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Fig. 3. Dimensionless phase velocity V3 (a) and attenuation coefficient 3 (b)
of a longitudinal capillary wave vs. the modulus of the wave vector.

U=0U, (x,) + UV & 7, x, 1), UD = et + 2w + U, = U9 + e + 2aw® 4, (15)
b (X 1) ( ) b= Up b b

where H(x, 0 is the null vector of the matrix of the operator A,, linearized against the background U(O), that
corresponds to one of the frequencies w;(x, ¢, k) identified as a result of dispersion analysis.

The solution for Uy, is constructed by substituting (15) into (1)-(8) and collecting one-scale terms. The
final system of equations admits, as a zero approximation of the background solution, any constant vector function
Uf,o) = const. For the first approximation ng) of the background solution (accurate to O(e), we obtain a
homogeneous hyperbolic equation, but since the initial data (9) mod O(e) are zero and the function w s a
function with a zero average, this equation has a unique zero solution ng) = (.

Next, for Wgz)(x, f} (a solution accurate to O(ez), we obtain the following equation:

W
4

+ KW 4 Ky =0, (16)
dA

where d/dt4 is the total derivative along the wave trajectory; the coefficients K; and K, are determined upon
substitution of the form of the solution into the initial system of equations; K3 involves “sources" — integral terms
that are averages of nonlinear terms (squares of fast wave functions w'y.

For the linear problem, the condition of zero averages would lead to a homogeneous equation that has only
a trivial solution. In the nonlinear case under study, even with a zero initial condition for the function Wgz)(x, D,
which is a consequence of the initial data (9), the inhomogeneous equation (16) will have a nontrivial solution,
which explains the mechanism of initiation of the medium’s slow motion as being a result of nonlinear interphase
interaction (friction).

We next construct an approximate solution of the plane traveling wave type. Substitution of S = kx — wt
leads to d/dt4 =0, and the solution has the form

o _ K (17)

Figure 4 presents results of calculations for longitudinal waves of the 1st and 2nd kind and capillary waves.
The function Wf,z) is plotted against the initial saturation of the liquid phase in the pool s for the above
dimensionless parameters, & = (1, 0, 0}, and a constant amplitude wl =1,

As Fig. 4 shows, the action of waves of the Ist kind and capiilary waves depends substantially on the
background saturation. This shows up especially strongly for capillary waves, which can have a substantial effect
at low saturation of one phase, i.e., where the gradient of the capillary forces is maximum. Conversely, the "work”
of waves of the 2nd kind practically does not depend on the pool saturation.

Naturally it is of interest to elucidate motion of what scale can be induced by small-amplitude acoustic
waves. As estimates obtained by reducing results of calculations to a dimensional form show, prolonged ultrasonic
action with an amplitude of ~0.1 MPa initiates filtration motion with velocities of ~107%~1073 m/sec, which are
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Fig. 4. Change in the background state w§,2> vs. the initial saturation of the
liquid phase in a stratum 59 under the action of longitudinal waves of the
Ist (curve 1) and 2nd (curve 2) kind and capillary waves (curve 3).

quite comparable with the velocities of the inflow to the well in working oil- and gas-bearing strata. We note that
there is a quadratic dependence of the amplitude of the resultant motion on the amplitude of the acoustic action.

NOTATION

x, spatial coordinate; ¢, time; m, porosity; p, density; v, viscosity; p, pressure; T, temperature; «, amount
of bound liquid; u, displacement vector; e;;, deformation tensor; oy, effective-stress tensor; f, phase permeability;
E, specific internal energy; K, moduius of elasticity; &, shear modulus; R, gas constant; C, heat capacity; S,
compressibility factor; ¢, coefficient of thermal expansion; J, Leverette function; y, dimensionless coefficient of
surface tension. Subscripts: liq, liquid phase; g, gas phase; s, solid phase; «, bound liquid.
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