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P R O P A G A T I O N  O F  A C O U S T I C  W A V E S  I N  

U N S A T U R A T E D  P O R O U S  M E D I A  

A. M. Maksimov UDC 532.546:534.2 

A mathematical model  of  propagation of  acoustic waves in a porous medium saturated with a two-phase 

mixture is proposed. The mechanism of  initiation of slow motion as a result of  prolonged nondestructive 

acoustic action is analyzed. 

The  problem of the description of the nonlinear wave dynamics of rocks in the acoustic frequency range 

assumes not only analysis of the propagation and at tenuation mechanisms for fast elastic waves [ l ,  2]  but also 

estimation of slow motion (for example,  filtration flow and a change in the s t ressed-strained state) that is initiated 

as a result of prolonged action of acoustic waves [3 ]. A mathematical  model of a f luid-saturated deformable porous 

medium can be efficiently const ructed by the methods  of porous-medium mechanics [4 ] and ,  unde r  certain 

conditions of the existence of dimensionless perturbations,  be investigated using asymptotic methods,  for example,  

an operator  method of multiscale expansions 15 ]. 

Implementation of the indicated approach in cases of single-phase saturation is presented in [6-8 ], in which 

account for dispersion factors (viscous stresses and thermal diffusivity) is shown to give rise, for the highest spatial 

derivatives in the equations of the model, to dimensionless parameters:  the inverse acoustic Reynolds  Rea  t and 

Peclet Pe a I numbers.  For large Rea >> 1 and Pe a >> l, which correspond to a high-permeabil i ty medium saturated 

with a low-viscosity fluid, it becomes possible to use the multiscale-expansion method for asymptotic investigation 

of the model in the ultrasonic range of l04 -105  Hz (when the carrier-wave frequency, on the one hand,  exceeds 

the characteristic frequency of interphase transfer  of momentum w. = vm2 /px ,  where v, p,  m, and x are the 

characteristic viscosity of the fluid and density, porosity, and permeabili ty of the medium, and,  on the other ,  does 

not fall within the megahertz range, in which scattering mechanisms should be allowed for [9 ]). 

The  asymptotic method enables us to separate fast and slow motions and solve two basic problems. The  

first problem consists in assessing fast processes of wave propagation and at tenuat ion against the background of 

the slow motion of the medium. The  solution is constructed in two stages: first, l inear dispersion analysis is 

performed, which enables us to assess the stability and regimes of wave at tenuation over a wide range of acoustic 

Reynolds and Peclet numbers. Next,  for large Rea and Pea, the Cauchy problem for the initial system of equations 

of the laws of conservation of mass, momentum, and energy is t ransformed to a Cauchy problem for nonlinear 

evolution equations (of the Burgers type),  which permits investigation of nonlinear mechanisms of at tenuat ion.  

The  second problem involves evaluation of the "work" of acoustic waves over a long time, when averaging 

of nonlinear oscillations leads to accumulation of changes in the parameters of the background motion. Clearly,  

this problem is key for modeling the acoustic action of waves of different types on oil pools. Construct ion of the 

solution here assumes derivation and numerical investigation of a system of equations that describes background 

motion in "real" time and takes into account (in the form of sources) the nonlinear contribution of fast oscillations. 

Formulat ion of the Pool Model. We consider a porous medium that consists of an effective viscoelastic solid 

phase that is formed by a thermoelastodeformable skeleton and a viscous liquid bound by the skeleton surface and 

is saturated with a two-phase fluid, i.e., a viscous liquid and gas that occupy their pore systems. The  stress tensors 

in the liquid and gas phases will have the form (t, j = l, 2, 3) 
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pqliq = _ P|iq c~ij + Vliq [OVliqi/Oxj -I- OVliqj/Ox i - ( 2 / 3 )  (OVliqk/OXk) 6q]  , 
(1) 

P~ij= - pg 3q + Vg [OVgi/Ox j + OvM/Ox i - ( 2 / 3 )  (OVgk/Oxk) c~ij ]. 

We write the equations of state, the the rmodynamic  relations for the liquid and  gas phases ,  and  the 

capil lary-equil ibrium condition: 

fig = p g / ( R T g ) ,  Eg = CgTg ,  P l i q  = P l i q 0  ( l  + f l l iq  (P l iq  - P l i q 0 )  - 991iq ( T l i q  - T l i q 0 )  , 
(2) 

Pl~qdEliq = PliqCliqdTliq + (Pliq/Pliq) d P l i q  - 991iqTliqdPliq , Pg - Pl iq  = YJ (s) . 

The  porous-medium skeleton and the bound liquid will be assumed  to form an effective viscoelastic solid 

phase that exhibits  the elastic properties of the skeleton and  the viscous properties of the liquid. Here ,  the skeleton 

and  the bound liquid have the same  velocity, t empera ture ,  and  pressure .  With al lowance for the viscoelastic 

properties,  the rheological relation for the solid phase has the form (i, j - -  1, 2, 3) 

~ij = Kekk6ij  + 2G (eij - ekkc~ij/3) + flsKP~ij - 99sKTs6ij + 

+ R e a l a m V a  [OVsi/Ox j + Ovsj/Ox i - ( 2 / 3 )  (Ovsk/Oxk) 6 i j ] ,  (3) 

where the average pore pressure p = spliq + ((1 - S)pg. 

The  equations of s tate  and the thermodynamic  relations for the components  of the solid phase  will be 

represented as 

S 
Pc, = Pao (1 - fla ( a k k / 3  - aO) - 99,~ (Ts - Ts0)) ; 

S 

Ps = Pso (1 - fls (ak~ /3  - a0) - 99s (Ts - Tso)) ; 

(4) 
$ S 

PsdEs  = PsCsdTs  + crildeiy + 99sTsdakk/3  ; 

$ s 
p a d E a  = P a C a d T  s - a k k /  (3pa ) dPa + 99aTsd a k k / 3  , 

where the true s tresses in the solid phase are determined by the relation 

liq 
~ijs = crij/( 1 _ (1  -- a )  m)  + sPi] + (1  - s )  P~///. 

We introduce the following dimensionless  variables and parameters :  

' ~O' ' 
x = x / x  o ,  t = t / t  o ,  u = u / x  O, = P / P o ,  P = P / K o ,  cr = c r / K  O, T'  = T / O  o ,  

v = v / v  O, fl = i l K  O, 99 =990 0 , K = K / K  o ,  G = G / K  O, E = E / v g ,  

, ~) , 2 z  Z'  (v~o v = v / ( K o t o ) ,  C = C O o / v  , )t = )tOoto/(XoVoOo), = ZOoto / o ) ,  

R = R O o / v  2 ,  k = k x  O, co =eOto ,  

where x 0 = rot o, t o = poK/Vg,  v 0 = ( K o / P o )  I/2 

Dropping the primes on the symbols ,  we write, in dimensionless  form, the sys tem of mass ,  momentum,  

and energy equations (i, j = I,  2, 3). 
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w h e r e  Vli q 

a n d  

T h e  l aws  of  c o n s e r v a t i o n  of m a s s  a r e  

S (m (1 - S )pg ) /O!  + V x (m (1 - S)pgVg) = 0 ;  S (m.~Pliq)/Ol + V x (mspliqVliq) = 0 ; 

S (ampa  + (1 -- m ) P s ) / S t  + V x ( (ampa  + (I - m ) P s )  Vs) = 0 ,  

= (Vl iq l  , Vliq2 , Vl iq3)  , Vg = ( V g l ,  Vg2,  V g 3 ) ,  v s = (Vs l  , Vs2 , Vs3). 
T h e  l aws  of  c o n s e r v a t i o n  of m o m e n t u m  a r e  

liq 
P l i q  I s~a t  + (Vl iq ,  V x )  l Vliqi - s P i j / O x j  + ms  (1  - c t )  (Vl iq i  - Vsi)/fliq (s) = 0 ; 

pg I s / a t  + (vg, Vx> ] vg i - apgo/ax/ + m (1 - s) (1 - a )  (Vg i - Vsi ) Vg/(Vl iqfg ( S ) )  = 0 ;  

(ampa  + (1 -- rn) ps )  I S / a t  + (v s, V x ) l  vsi - a a i / / a x / -  

l iq 
-- s (1 - (1 -- a )  m)  OPq /Ox j  -- (1 - s)  (1 - ( I  - ct) m)  SPgo./Oxj - 

2 2  
- m s ( I  - a )  2 (Vl iq i  - -  Vsi)/fliq (S) -- m 2 ( I  - -  S)  2 (1 - a )  2 (vg i - Vsi ) Vg/Vliqfg (S)) = O.  

T h e  l aws  of  c o n s e r v a t i o n  of  e n e r g y  a r e  

m (I  - s)  (1 - a ) p g  [SlOt + (vg, Vx) !  Eg - m s  (1 - a )  l~ii / avgi/axy + Zg (Tg - Ts) - 

2 2  
- m s (1 - a )  2 (Vg Vs) 2 V g / ( V l i q . f g  ( S ) )  - -  (1 - a )  2gV x (m (1 - s)  VxTg ) = 0 ; 

l iq 
m s  ( 1  - -  c~) P l i  q I S / S t  -t- <Vliq,  Vx> ] E l i  q - m s  ( 1  - a )  Pij SVliqi/Sxj  - 

2 2  _ _ 
- m s ( |  - c t )  2 (v i i  q Vs)2/fliq (s) q- ZI iq  ( T l i q  T s )  - (1  - c t ) ~ . l i q V x  (msVxTl iq)  = 0 ; 

(1 - m ) p  s IS~St  + (v s, Vx>l E s + a m p a  IS~St  + <v s, Vx) l E,~ - 

l iq 
-- [o i l+  s ( l  - (1 - a )  m ) P i y  + (1 - s)  (1 - (1 - a )  m)  P / / j ] S v s i / S x  j -  

-- Zliq (Tliq - Ts) - Zg (Tg - Ts) - V x ( ( I  - m)  )t s + arn)ta) V x T  s = 0 

(5) 

(6)  

(7) 

Su i /S t  - Vsi = 0 ; eq - lau i /Ox  / + O u y / a x i i / 2  = 0 .  (8)  

S u b s t i t u t i o n  of t h e  r h e o l o g i c a l  a n d  t h e r m o d y n a m i c  r e l a t i o n s  i n t o  the  s y s t e m  of c o n s e r v a t i o n  l aws  ( 1 ) - ( 8 )  

g ives  r i s e ,  fo r  t h e  s e c o n d  s p a t i a l  d e r i v a t i v e s  in  t h e  m o m e n t u m  a n d  e n e r g y  e q u a t i o n s ,  to  t h e  i n v e r s e  a c o u s t i c  

R e y n o l d s  R e a  I a n d  P~cle t  P e a  I n u m b e r s ,  r e s p e c t i v e l y .  It is e a s y  to s ee  t h a t  

2 
R e  a = VoXoPo/V o =- KoPotC/Vo , Pe  a = VoXoPoCo/2o - K o P o C o r /  (Vo;to) " 

E s t i m a t e s  of  the  d i m e n s i o n l e s s  p a r a m e t e r s  can  be  o b t a i n e d  u s i n g  the  c h a r a c t e r i s t i c  c o n s t a n t s  of r o c k s  a n d  

po re  f l u id s :  K 0 - 1 0 8 - 1 0 9  Pa ,  0 o -  1 0 2 - 1 0 3  K, Po  - 1 0 1 - 1 0 3  k g / m 3 , / 3  - 1 0 - 1 ° - 1 0  - 9  P a  - 1 ,  ,p - 1 0 - 6 - 1 0  - 3  K - l ,  

C O - 103 J / ( k g . K ) ,  "~0 - 1 0 - 3 - 1 0 °  W / ( m . K ) ,  v 0 - 1 0 - 5 - 1 0  - 3  P a - s e c ,  a n d  ,: - 1 0 - 1 5 - 1 0  - 1 2  m 2. F o r  t h e s e  

p a r a m e t e r s ,  we h a v e  a n  Rea  r a n g e  of - 1 0  ° -  106 a n d  a Pea r a n g e  of  - 1 0 1 -  106 . T h u s ,  in  the  a c t u a l  r a n g e  of  poo l  

p a r a m e t e r s ,  t he  d e g r e e  of i n f l u e n c e  of d i s p e r s i o n  f a c t o r s  (v i scous  s t r e s s e s  a n d  t h e r m a l  d i f f u s i v i t y )  c a n  p r o v e  to  b e  
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both rather small (in a high-permeability medium saturated with a low-viscosity fluid) and finite tin a low- 

permeability medium saturated with a high-viscosity fluid). For large Rea >> ! and Pe a >> 1, it becomes possible 

to identify perturbations associated with these numbers and to investigate the process asymptotically. 

Evolution of Small Free Oscillations. To investigate the special features of wave propagation in a porous 

medium saturated with a two-phase liquid-gas mixture, in what follows we restrict ourselves to the Cauchy problem 

with the initial data (i, j = 1, 2, 3) 

0 0 0 0 0 0 
Ui [ t=  0 = U i , Vsilt=O = Vsi , Vgi[t= 0 = Vgi, Vliqi[t=O = Vliqi , m l t = 0  = m , s l t = o  = s , 

o o o o 
Pliqlt=0 = Pliq, Pglt=0 = Pg, Tglt=0 = Tg, Tli q It=0 = Tliq, Tslt=0 = 79 ; 

o o 
eiylt= o = eij = [Ou /Oxy + Ou / O x i ] / 2 ;  

0 0 2 G ( e  0 (1/3)  eOkksi/) +flsKpOc~ij or/j[ t=0 = cr/j = Kekk~i/ + -- 

0 a m O a  0 0 0 
- (ovsk/Ox D [OVsi/Oxj + Ovs//Ox i (2 /3)  6q] .  ~OsKTsC)ij + (9) 

The solution to problem (1)-(9) will be sought in the form of a superposition of the slow background motion 

and its small rapidly-oscillating perturbation 

U = U b (x, t) + 0U I exp ( iS~O) .  (10) 

Here e is the perturbation, U = (m, Vgi, Vliqi, Vsi, Pliq, Pg, s, Tg, Tliq, Ts, ui, oij, eij) is the vector-function of the 
sought quantities, and the phase is S / e  = (1~) - tot, where the fast variables are r = t / e  and ~i = x i / e .  

For simplicity we take, as the background solution, a uniform steady state, i.e., a quiescent state U(b °) whose 

existence is governed by the conditions of zero velocities of phase motion (v~ O) = v~ °) = v(O)tiai -- 0), equality of phase 
p[O), , . !o )  of x. temperatures (T(g 0) = T~s 0) = 4 °) = 740)), and independence of the constants m(°), p~O), s(O) 

The system of equations (1)-(8) linearized against the background U~ °) can be represented in the operator 

form 

A . U  = O ,  ( l l )  

where 

2 (02/OxiOxj U(b0)) + A3 (/riO)) . A ( O / O t ,  O / O x i ,  0 / O x i O x j ,  UO) = A 1 ( O / O t ,  O / O x i ,  U (0)) + A 2 

In what follows, let Ut be determined by the amplitude of the initial perturbation, i.e., the oscillating portion 
U ( 0 ) -  (m(°), v(gO), riO), v~O), p/O), p(O),s(O), T(g0), ~io), g0) ,  u!0), a~O), e~0)), the wave-vector components are real 

numbers, and the frequencies w can be complex. This approximation corresponds to the Cauchy problem for the 

evolution of k-waves that are the analog of free oscillations [10]. Here, the imaginary part of w determines the 

coefficient of wave attenuation. 
Substitution of the solution in the form of (10) into the linear system (11) leads to the condition of nontrivial 

solvability: a dispersion equation that relates w to k. For analyzing the attenuation mechanisms for waves of 

different types, it is of interest to investigate the dependences of the phase velocities V(k) = R e ( w / I k l )  and the 

attenuation coefficients 5 (k) = Im (w) in various scales of the acoustic Reynolds and Peclet numbers and the related 

perturbation e. Results under the assumption of the equality of the Froude number Fr = 1 are given below for three 

cases. We note that the wave characteristics obtained as functions of I kl correspond to an isotropic background 

stressed-strained state. 
Analysis of Dispersion Relations. Case 1: e 2 = Rea I = Pea I - 10 -6. It is easy to see that substitution of 

(10) into (t 1) leads, accurate to O(e), to the dispersion relation 

432 



V 1 

L28 

1.15 

1.f0 

f.05 

f.O 

O.95 

0 

. . . . . . . . . . . .  , S z  . . . . . . . . . . . . . .  

"' ,~..  

a "'.'.,-.. 

, , ~ 7 " ' "  -Z 

0.2 0.4 0.6 0.8 Ikl 

G 
0 

-8.85 

-0.10 

-O J8 

-0.20 

0 

• " x  

" , ,  x 

A 7 . . . .  i , 

0.2 0.4 0.6 8.8 [ k( 

Fig. 1. Dimensionless phase velocity Vi (a) and a t tenuat ion coefficient 61 (b) 

of a longitudinal wave of the 1st kind vs. the modulus  of the wave vector. 

J I  = Det A l ( -  iw , ik i , U~ 0)) = 0 .  (12) 

The  dispersion relations are not given in explicit form because of their ex t remely  cumbersome  nature.  

Further  investigation is limited to a numerical  analysis  with graphical representat ion of the results. 

In the case under  s tudy,  the sys tem of equations of the model is hyperbolic,  and  dissipation and  dispersion 

effects are not allowed for in the l inear analysis.  This leads to absence  of a t tenuat ion ( lm(w) = 0) and  constant  

velocities for all types of waves for any  k. We note that l inear analysis  is the first s tage of using the mult iscale-  

expansion method to construct  an asymptot ic  solution of higher accuracy.  Thus ,  constructing a solution accurate  

to O(e 2 ) leads to a nonl inear  equation of the Burgers type, and the next step of the expansion (accurate to 0(e 3) 

leads to a K o r t e w e g - d e  V r i e s - B u r g e r s - t y p e  equation. This  nonl inear  evolution equation a l ready  allows for effects 

of weak dissipation and dispersion and enables us to analyze nonl inear  regimes of a t tenuat ion of waves and  their  

resonance interaction [11 1. 

C a s e  2: e = R e a  i = P e a  I - 1 0  -3.  Substituting (10) into (11) leads, accurate  to O(e) ,  to the dispersion 

relation 

J2 = Det [A 1 ( -  ioo , iki , U(b 0)) + A 2 ( i2kik/  , u(bO)) ] = 0 .  (13) 

As can be seen from (13), in the case under  s tudy the dispersion factors are allowed for and dissipation due to 

interphase friction is d is regarded in the characteristic equation. The  sys tem of equations of the model is no longer 

hyperbolic,  which is expressed,  in particular,  in the complex-valued nature  of the frequencies of all the identified 

wave types. Here  it is of interest  to evaluate in a linear approximat ion the phase velocities of the waves V and the 

at tenuat ion coefficients 6 as functions of the wavelength. 

Asymptot ic  ana lys i s  of this case in a nonlinear s ta tement  assumes  the use of a modif ied mult iscale-  

expansion method  [5 ] for the case of "strong" dispersion, which is beyond  the scope of the present  work. 

C a s e  3: e = R e a  1 = Pea  I - 1. Here  all the factors (inertia, dissipation, and  dispersion factors) prove to be 

of the same order ,  and  the sys tem of equations of the model does not involve a per turbat ion that governs the scale 

of fast variables (~ = t, ~i =- x i ) .  To analyze  the evolution of per turbat ions of the background solution, let us a s sume  

addit ionally that Ul << Ut,. Substitution of (10) into (11) leads to the dispersion relation 

2 
J3 = Det [A 1 ( -  iw , ik i , U(b °)) + A 2 (i kiky , U(b 0)) + A 3 (U(b0)) ] = 0 .  (14) 

In the case under  s tudy,  it becomes possible to assess the joint effect of dissipation and  dispersion mechanisms.  

Figures 1-3 present  results of calculations of the phase velocities V i and the a t tenuat ion coefficients b i for 

longitudinal waves of the 1st (i = 1) and 2nd (i = 2) kind and capil lary waves (i = 3) based on a numerical  

determinat ion of the roots of dispersion relations (12)-(14).  The  numbers  of the presented curves correspond to 

the above cases .  The calculations are performed for the following dimensionless  parameters :  Vg = 0.01, Vliq = 0.1, 

va = 1, P,~0 = 1, Pliq0 = 1, P s 0  = 2.5, ¢,,~ = 0.5, fla = 0.5, ggli q = 0 . 5 ,  f l l i q  = 0 . 5 ,  ~0 s = 0.1, fls = 0.1, G = 0.3, K = 1, 
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Fig. 2. Dimensionless phase  velocity I/2 (a) and  a t tenuat ion coefficient 62 (b )  

of a longitudinal wave of the 2nd kind vs. the modulus of the wave vector. 

C a = 1, Cli q = 1, Cg  = 0 . 3 ,  C s -- 0 . 4 ,  .~.g = 0 . 0 0 1 ,  '~.liq = 0 .5 ,  ~.a = 0 . 5 ;  '~s = l ,  Xliq = 0.  l ,  ,~g = 0 . 0 1 ,  c~ = 0.  l ,  rtz (0) = 0.2, 
T(0) = (0) (0) 9 2 2 

[ ,  Pliq = 0 .  l ,  eij = 0, J = 0.5(1 + (1 - 2s) ) , / l iq = s , fg = (l - s) , }, = 0.001. 

The  solid curves (1, 2, and 3) are obta ined for s (°) = 0.2, and  the dashed  curves ( l ' ,  2 ' ,  and  3') correspond 

to s (°) = 0.8. 

Let  us f i r s t  c o n s i d e r  l o n g i t u d i n a l  waves  o f  t he  1st k i n d  (F ig .  1). Case 1 ( cu rves  1 a n d  1') is c h a r a c t e r i z e d  

by a wavelength- independent  phase  velocity and absence  of a t tenuat ion (this is true of all the wave types for case 

1). Compar ison of the solid and dashed  curves demonst ra tes  a significant increase in the propagat ion velocity for 

waves of the 1st kind with increase in the l iquid-phase content.  A tendency for a decrease  in the velocity of the 

wave with decrease in its wavelength when the effect of the dispersion and  dissipation factors shows up is also 

evident (curves 2 (2') and 3 (3') in Fig. la) .  However,  velocity dispersion becomes substant ia l  only as the sa turat ion 

s (°) increases.  

Attenuation of waves of the 1st kind increases as a whole as the wavelength decreases  (curves 2 (2') and 

3 (3') in Fig. lb) .  With high saturat ion of the liquid phase, there is an a t tenuat ion ex t remum,  where  the tendency 

for an increase in the absolute value of the a t tenuat ion coefficient gives way to the opposite (curves 2 and  2' in Fig. 

lb) .  

An ambiguous  effect of the magni tude of the saturat ion s ~°) shows up clearly in the example  of longitudinal 

waves of the 2nd kind that  are  dist inguished by oppositely directed motions of the solid and  fluid phases.  As is 

evident from a comparison of curves 2 and 2' in Fig. 2 in case 2, for a larger s (°) the phase  velocity proves to be 

higher only in the longwave range, while the at tenuat ion increases with s (0) for all wavelengths.  Case 3, where 

in terphase  friction has a determining effect, is character ized by a sha rp  decrease  in the wave velocity and  an 

increase in the a t tenuat ion as the wavelength decreases.  This  is in good agreement  with known exper imenta l  facts 

of s t rong a t tenuat ion of waves of the 2nd kind in rocks [3 ]. 

It is significant that  in the considered case of saturat ion of the porous medium with a two-phase  fluid (a 

l iquid-gas mixture) ,  the absolute values of the a t tenuat ion coefficients for waves of the 1st and  2nd kind prove to 

be of the same order  of magnitude in the shortwave (ultrasonic) range. An important  difference shows up in the 

magni tude of the phase velocity. 

We analyze  capil lary waves that are character ized by ant iphase  motion of the solid phase  and  the l i q u i d - g a s  

mixture  in them. 

The  curves of Fig. 3 indicate very low velocities of the longitudinal capillary waves that  differ  from the 

velocities of other longitudinal waves by 1-2 orders of magnitude. With low saturation s (°), the effect of the dispersion 

and dissipat ion factors leads to near-zero  phase  velocities (curves 2 and  2' in Fig. 3a). As s (°) increases ,  an 

ex t remum character  is observed for the dependence  of V 3 in the longwave range. 

The  character  of the curves of Fig. 3b indicates a qualitative similari ty of the dependences  of the a t tenuat ion  

coefficients for capillary waves and waves of the 2nd kind. The  important  difference is in the fact that,  in the 

capillary waves, the a t tenuat ion coefficient is an order  of magni tude higher. 

Assessment  of the Resultant Action of Acoustic Waves.  For asymptot ic  analysis  of the dynamics  of the 

background motion, we represent  the solution to problem (1)-(9) in the form [6-8, l 1 ] 
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Fig. 3. Dimensionless phase velocity V 3 (a) and a t tenuat ion coefficient 6 3 (b) 

of a longitudinal capil lary wave vs. the modulus of the wave vector. 

u = u,, (~, t) + c / t )  (~, ~. ~. t ) ,  t / ' )  = . v ~ ¢ ' )  + ~ n #  2) + . . . .  ub = ~ o )  + ~ H ~ , )  + ~ H ~ 2 )  + . . . .  ( i s )  

where H(x,  t) is the null vector of the matr ix  of the operator  A l, l inearized against  the background U(b °), that  

corresponds to one of the frequencies a~i(x, t, k) identified as a result of dispersion analysis .  

The  solution for Ub is constructed by subst i tut ing (15) into (1)-(8)  and  collecting one-scale  terms. The  

final sys tem of equations admits ,  as a zero approximat ion of the background solution, any  constant  vector function 

U~ O) = const .  For  the first  a p p r o x i m a t i o n  W(b l) of the background  solut ion (accura te  to O(e) ,  we ob ta in  a 

homogeneous hyperbolic equation, but since the initial data  (9) mod O(e) are zero and  the function W ~i) is a 

function with a zero average,  this equation has a unique zero solution W(b I) = 0. 

Next ,  for W(b2)(x, t) (a solution accurate  to O(e2), we obtain the following equation: 

a'H'Xb 2) (16) 
at- - -~  + K1 ~ 2 )  + r2  = o ,  

where d/d tA  is the total derivative along the wave trajectory; the coefficients KI and  K 2 are de te rmined  upon 

substitution of the form of the solution into the initial sys tem of equations; K 2 involves "sources" - integral  t e rms  

that are averages of nonlinear  terms (squares of fast wave functions W(t)).  

For the linear problem, the condition of zero averages would lead to a homogeneous  equation that  has only  

a trivial solution. In the nonlinear  case under  s tudy,  even with a zero initial condit ion for the function W(b2)(x, t), 

which is a consequence of the initial data (9), the inhomogeneous equation (16) will have a nontrivial solution, 

which explains the mechanism of initiation of the med ium ' s  slow motion as being a result  of nonl inear  in te rphase  

interaction (friction). 

We next  construct an approximate  solution of the plane traveling wave type. Substitution of S = kx - cot 

leads to d / d t A  = 0, and the solution has the form 

W(b2) = K2 (17) 
K l 

Figure 4 presents results of calculations for longitudinal waves of the 1st and  2nd kind and capil lary waves. 

The  function W(b 2) is plotted against  the initial sa tura t ion  of the liquid phase  in the pool s (0) for the above 

dimensionless  parameters ,  k = (1, 0, 0), and  a constant  ampli tude W (l) = 1. 

As Fig. 4 shows, the action of waves of the 1st kind and capil lary waves depends  substant ia l ly  on the 

background saturation.  This  shows up especially strongly for capillary waves, which can have a substant ia l  effect 

at low saturat ion of one phase,  i.e., where the gradient of the capillary forces is maximum.  Conversely,  the "work" 

of waves of the 2nd kind practically does not depend on the pool saturat ion.  

Natural ly  it is of interest  to elucidate motion of what scale can be induced by smal l -ampl i tude  acoustic 

waves. As est imates  obta ined by reducing results of calculations to a dimensional  form show, prolonged ul t rasonic 

action with an ampli tude of - 0 . 1  MPa initiates filtration motion with velocities of - 10 - 6 -  10 -5  m/sec ,  which are 
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Fig. 4. Change in the background state W(b 2) vs. the initial saturation of the 
liquid phase in a stratum s (°) under the action of longitudinal waves of the 
1st (curve 1) and 2nd (curve 2) kind and capillary waves (curve 3). 

quite comparable with the velocities of the inflow to the well in working oil- and gas-bearing strata. We note that 

there is a quadratic dependence of the amplitude of the resultant motion on the amplitude of the acoustic action. 

N O T A T I O N  

x, spatial coordinate; t, time; m, porosity;/9, density; v, viscosity; p, pressure; T, temperature; a, amount 

of bound liquid; u, displacement vector; eli, deformation tensor; aih effective-stress tensor; f, phase permeability; 
E, specific internal energy; K, modulus of elasticity; G, shear modulus; R, gas constant; C, heat capacity; /~, 
compressibility factor; ,p, coefficient of thermal expansion; J, Leverette function; 7, dimensionless coefficient of 

surface tension. Subscripts: liq, liquid phase; g, gas phase; s, solid phase; a, bound liquid. 

R E F E R E N C E S  

M. A. Biot. J. Acoust. Soc. Amer., 28, 168-186 (19561. 
G. Mavko and A. Nur, Geophysics, 44, No. 11 (1979). 

. 

2. 
3. O.L. Kuznetsov and S. A. Efimova, Use of Ultrasound in the Petroleum Industry [in Russian ], Moscow (1983). 
4. V.N. Nikolaevskij, Mechanics of Porous and Fractured Media, Singapore (1990). 
5. V.P. Maslov, Asymptotic Methods for Solving Pseudodifferential Equations [in Russian l, Moscow (1987). 

6. A.M. Maksimov and E. V. Radkevich, Dokl. Ross. Akad. Nauk, 333, No. 4,432-435 (1993). 
w 

7. A.M. Maksimov, E. V. Radkevich, and I. Ya. Edel'man, Dokl. Ross. Akad. Nauk, 336, No. 6, 168-172 (1994). 
8. A.M. Maksimov, E. V. Radkevich, and I. Ya. Edel'man, Dokl. Ross. Akad. Nauk, 342, No. 3, 322-325 (1995). 

9. V.M. Markulova, lzv. Akad. Nauk SSSR, Fiz. Zemli, No. 9, 47-60 (1966). 

10. R.I .  Nigmatulin, Dynamics of Multiphase Media, Part 1 [in Russian ], Moscow (1987). 
11. A.M. Maksimov, E. V. Radkevich, and I. Ya. Edel'man, Prikl. Mekh. Tekh. Fiz., No. 1, 119-128 (1996). 

436 


